FAQ

Radon is a gaseous radioactive element having the symbol Rn, the atomic number 86, an atomic weight of 222, a melting point of -71ºC, a boiling point of -62ºC, and (depending on the source, there are between 20 and 25 isotopes of radon – 20 cited in the chemical summary, 25 listed in the table of isotopes); it is an extremely toxic, colorless gas; it can be condensed to a transparent liquid and to an opaque, glowing solid; it is derived from the radioactive decay of radium and is used in cancer treatment, as a tracer in leak detection, and in radiography. (From the word radium, the substance from which it is derived.)

Sources: Condensed Chemical Dictionary, and Handbook of Chemistry and Physics, 69th ed., CRC Press, Boca Raton, FL, 1988.

Radon-222 is the decay product of radium-226. Radon-222 and its parent, radium-226, are part of the long decay chain for uranium-238. Since uranium is essentially ubiquitous (being or seeming to be everywhere at the same time) in the earth’s crust, radium-226 and radon-222 are present in almost all rock and all soil and water.

The amount of radon in the soil depends on soil chemistry, which varies from one house to the next. Radon levels in the soil range from a few hundred to several thousands of pCi/L (picocuries per liter) in air. The amount of radon that escapes from the soil to enter the house depends on the weather, soil porosity, soil moisture, and the suction within the house.

EPA already has a wealth of scientific data on the relationship between radon exposure and the development of lung cancer. The scientific experts agree that the occupational miner data is a very solid base from which to estimate risk of lung cancer deaths annually. While residential radon epidemiology studies will improve what we know about radon, they will not supersede the occupational data. Health authorities like the Centers for Disease Control (CDC), the Surgeon General , the American Lung Association, the American Medical Association, and others agree that we know enough now to recommend radon testing and to encourage public action when levels are above 4 pCi/L. The most comprehensive of these efforts has been the National Academy of Science’s Biological Effects of Ionizing Radiation (BEIR VI) Report (see https://www.epa.gov/radon/health-risk-radon#beir). This report reinforces that radon is the second-leading cause of lung cancer and is a serious public health problem. As in the case of cigarette smoking, it would probably take many years and rigorous scientific research to produce the composite data needed to make an even more definitive conclusion.

Read more about radon health risks at https://www.epa.gov/radon/health-risk-radon.

Any home may have a radon problem.

Radon is a radioactive gas.  It comes from the natural decay of uranium that is found in nearly all soils. It typically moves up through the ground to the air above and into your home through cracks and other holes in the foundation. Your home traps radon inside, where it can build up. Any home may have a radon problem. This means new and old homes, well-sealed and drafty homes, and homes with or without basements.

Radon from soil gas is the main cause of radon problems. Sometimes radon enters the home through well water. In a small number of homes, the building materials can give off radon, too. However, building materials rarely cause radon problems by themselves.

Radon gas is approximately 7.5 times heavier than air.  It is however a noble gas with no chemical affinity but is easily influenced by air movements and pressure.  In a house with forced air heating and cooling, radon gas can easily be distributed throughout the entire dwelling. When radon gas is discharged via a radon mitigation system above the roof, the radon concentration falls off dramatically with distance from the point of discharge.  In fact, the radon gas concentration approaches  background levels at 3-4 feet from the discharge point.  EPA disallowed ground level discharge of radon primarily because of the potential for re-entrainment of the gas into the house and because of the possibility of children being exposed to high radon levels.  The concentration of radon gas at the discharge point can be tens of thousands of picocuries per minute.